本橋 洋介 著
金融、流通、製造、インフラなど全8業界36業種のAIの導入について、どのような分野で活用されているのか、
どのような事項との親和性が高いかといったことについて鳥瞰図で解説。豊富な実例も掲載しており、ビジネスのアイデア創出にも応用できます。
また、「こんな応用可能性があります」にとどめず、実際に実装したりトライアルをするときのノウハウも掲載しています。
本書掲載の鳥瞰図はご購入者特典としてDLして活用できます。
【本書に掲載されている業種】
〈流通〉
コンビニ・スーパーマーケット
百貨店業
郵便・運送業
〈製造〉
自動車製造業
食品・飲料製造業
化粧品・日用品製造業
金属製造業・化学工業
重工業
建設業
繊維工業(アパレル)
電機製造業
〈金融〉
銀行業
保険業
証券業
〈サービス〉
ホテル業
旅行代理業
外食業
テーマパーク
放送局
〈インフラ〉
通信業
鉄道業
航空業
空港
道路・交通インフラ管理業
エネルギー業(ガス・電気)
石油および天然ガス生産・販売業
〈公共〉
学校・学習塾
警察・警備
消防・防災
〈ヘルスケア〉
病院
介護サービス業
製薬業
〈その他〉
農業
水産業
スタジアム・(プロ/アマ)スポーツ
ゲーム業
Chapter 1 流通
コンビニ・スーパーマーケット
百貨店業
郵便・運送業
詳細解説:商品需要予測に基づく在庫管理
Chapter 2 製造
自動車製造業
食品・飲料製造業
化粧品・日用品製造業
金属製造業・化学工業
重工業
建設業
繊維工業(アパレル)
電機製造業
詳細解説:査定自動化・見積り自動化
Chapter 3 金融
銀行業
保険業
証券業
詳細解説:不正検知
Chapter 4 サービス
ホテル業
旅行代理業
外食業
テーマパーク
放送局
詳細解説:キャンペーン企画・価格設定
Chapter 5 インフラ
通信業
鉄道業
航空業
空港
道路・交通インフラ管理業
エネルギー業(ガス・電気)
石油および天然ガス生産・販売業
詳細解説:劣化予測・メンテナンス計画作成
Chapter 6 公共
学校・学習塾
警察・警備
消防・防災
詳細解説:画像データによる異常検知・品質評価
Chapter 7 ヘルスケア
病院
介護サービス業
製薬業
詳細解説:センサーデータによる異常検知
Chapter 8 その他
農業
水産業
スタジアム・(プロ/アマ)スポーツ
ゲーム業
詳細解説:見込み顧客分析・離反分析
会員特典はこちら
刷数は奥付(書籍の最終ページ)に記載されています。
書籍の種類:
書籍の刷数:
本書に誤りまたは不十分な記述がありました。下記のとおり訂正し、お詫び申し上げます。
対象の書籍は正誤表がありません。
発生刷 | ページ数 | 書籍改訂刷 | 電子書籍訂正 | 内容 | 登録日 | ||||
---|---|---|---|---|---|---|---|---|---|
1刷 | 042 下段17行目 |
未 | 未 |
|
2019.11.06 | ||||
1刷 | 042 下段20行目 |
未 | 未 |
|
2019.11.06 | ||||
1刷 | 043 マップ内 |
未 | 未 |
|
2019.11.06 | ||||
1刷 | 043 マップ内 |
未 | 未 |
|
2019.11.06 | ||||
1刷 | 083 「横浜銀行、ブレインパッド」の事例 |
未 | 未 |
|
2019.12.03 | ||||
1刷 | 114 マップ「基本」の欄 |
未 | 未 |
|
2019.11.06 |