事例で学ぶ!あたらしいデータサイエンスの教科書 電子書籍|翔泳社の本
  1. ホーム >
  2. 電子書籍 >
  3. 事例で学ぶ!あたらしいデータサイエンスの教科書

事例で学ぶ!あたらしいデータサイエンスの教科書


形式:
電子書籍
発売日:
ISBN:
9784798164984
価格:
2,420(本体2,200円+税10%)

本書籍の他の形式を確認する

  • このエントリーをはてなブックマークに追加

データ分析は意思決定のためにあり!
現場で役立つデータサイエンスの新・定番書!

本書は、主に統計学の視点からデータサイエンスについて解説しています。

PythonやRといったプログラミング言語を通じて
データ分析の手法は一通り学んだという皆さん、そのスキル、
実際に活かせていますか? 具体的な課題解決につながっていますか?

・分析結果から何を読み取ればいいのかわからない
・数字からどんな価値を見いだせるのかがわからない
・そもそも、その分析方法が適切なのかどうか自信がない
・効率のいい分析ができているのかどうかわからない
という方、多いのではないでしょうか?

データを使って意思決定を行うには、統計学の知識は欠かせません。
そこで本書では、8つの具体的な社会事例を用い、
・課題に「適した」分析手法やデータの収集方法
・事例の分析結果の解釈
・分析や解釈の際に注意すべきこと
を数学の知識で補完しながら紹介しています。

著者は首都圏初のデータサイエンス学部として2018年4月に創設された、
横浜市立大学 データサイエンス学部 学部長の岩崎 学先生。

データサイエンティストやエンジニアが見失いがちな、
「何のために分析するのか」を意識しながら読み進めてみてください。

【こんな方にお勧めします】
・統計学もプログラミングも一通り学んだけれど、
 結果をどう判断すればいいのかわからないエンジニア
・分析結果の数字やグラフから、
 業務でいかすためのヒントを得たいデータサイエンティスト
・データサイエンスに興味のある学生(専門課程を選ぶ際の
 参考資料として)

※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。
※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。
※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。
※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。

(翔泳社)

課題を解決するための統計思考を丁寧にわかりやすく解説!
●データサイエンスの本質がわかる

●データサイエンスの本質がわかる

本書では社会展開を念頭に置いたうえで、主に統計学の視点からデータサイエンスの様々な面を取り上げています。

●応用分野での実際の課題で学べる

●応用分野での実際の課題で学べる

筆者が遭遇した課題を示し、一つの解決法を述べた後で、背後にある統計理論や考え方を解説する、ユニークな構成です。

●初級〜中級程度の統計手法を学べる

●初級〜中級程度の統計手法を学べる

大学初年級の統計学の基礎事項を解説し、さらに問題解決に必要な中級以上の内容の統計手法についても紹介しています。

目次の登録はありません。
本書は付属データの提供はございません。

書籍への問い合わせ

正誤表、追加情報をご確認の上、こちらよりお問い合わせください

書影の利用許諾について

本書籍に関する利用許諾申請はこちらになります

追加情報はありません。

ご購入いただいた書籍の種類を選択してください。

書籍の刷数を選択してください。

刷数は奥付(書籍の最終ページ)に記載されています。

現在表示されている正誤表の対象書籍

書籍の種類:

書籍の刷数:

本書に誤りまたは不十分な記述がありました。下記のとおり訂正し、お詫び申し上げます。

対象の書籍は正誤表がありません。

最終更新日:2021年04月01日
発生刷 ページ数 書籍改訂刷 電子書籍訂正 内容 登録日
1刷 051
2行目
rは英語力無の教員の
rは英語力無の教員に
2021.04.01
1刷 052
表5

(画像クリックで拡大)

(画像クリックで拡大)
2020.10.12
1刷 053
「3.3.1 選挙の投票率の例」本文 上から7行目
(iii) piおよびriはiに
(ii)  piおよびriはiに
2020.10.12
1刷 087
(14)の式
2020.10.12
1刷 088
掲載している5つの式
1行目の「SST = SSM + SSR」から順に、(16)(17)(18)(19)(20) の番号を振ります。
2020.10.12
1刷 088
上から5つ目の式
2020.10.12
1刷 101
下から2行目
父親ほど大きくない
父親ほど高くない
2021.04.01
1刷 102
7行目の(1)式
2021.04.01
1刷 103
本文上から9行目
逆に x < μY のときは
逆に x < μx のときは
2020.10.12
1刷 107
本文 上から5行目
具体的に相関係数が0.5のとき
具体的に相関係数が0.7のとき
2020.10.12
1刷 107
本文 下から4行目
平均して偏差値は
相関係数が0.7のときは平均して偏差値は
2020.10.12
1刷 108
「5.3.1 統計的推測のためのモデル」の本文2行目
とすると、(6)より、
とすると、X ≥ c のスクリーニングがある場合、(6)より、
2021.04.01
1刷 109
下から2行目
としたとき、
に従うとしたとき、
2021.04.01
1刷 112
下から4行目の(14)
2020.01.20
1刷 113
4行目
tよりも離れた値
t以上離れた値
2021.04.01
1刷 113
下から2行目
2021.04.01
1刷 114
9~10行目
2021.04.01
1刷 115
8~9行目
2021.04.01
1刷 116
上から4行目の式

(画像クリックで拡大)

(画像クリックで拡大)
2020.10.12
1刷 120
本文9行目
縦軸を2回目のテストの点数として
縦軸を2回目の点数として
2021.04.01
1刷 130
上から12行目

上から14行目のも同様に訂正します。
2020.10.21
1刷 148
図1の括弧内の説明
(●:寿命観測、 ×:打ち切り)
(×:寿命観測、 ●:打ち切り)
2020.10.21
1刷 162
(17)の式
2020.10.21
1刷 164
下から7行目
観測されたn個の
観測されたm個の
2020.10.21
1刷 228
表8の(b)
2020.10.21
1刷 228
下から7行目から最終行まで
すなわち、1箇所でも欠測のある個体を削除したデータセットによるCC解析とするか、あるいは欠測箇所に何らかの値を代入して擬似完全データセットを作成するかのいずれかです。 表8 (a) から欠測のある個体を削除した7組のデータから求めた重回帰式は、表9より次式となります。 y = 10.075 + 0.811x1 – 0.151x2 + 0.219x3    (4)

上記内容に差し替えます。
2020.10.21
1刷 229
表9

(画像クリックで拡大)

(画像クリックで拡大)
2020.10.21
1刷 234
図7 (C)パターン混合モデルの凡例
2020.10.21