Pythonで学ぶあたらしい統計学の教科書 電子書籍|翔泳社の本
  1. ホーム >
  2. 電子書籍 >
  3. Pythonで学ぶあたらしい統計学の教科書

Pythonで学ぶあたらしい統計学の教科書


形式:
電子書籍
発売日:
ISBN:
9784798155074
価格:
本体3,000円+税

本書籍の他の形式を確認する

  • このエントリーをはてなブックマークに追加

基礎理論を飛ばさない!
推定・検定から統計モデル・機械学習へ!

本書は統計学の理論をゼロから学べる教科書です。
IoTやビッグデータの発展によりさまざまなデータが社会にあふれ、
全てのデータを確認するのは難しくなってきています。
多くのデータから価値があるデータを作成するには統計学の知識が必須です。

【本書のポイント】
本書は統計学をはじめて勉強するかたでも、
読み進めていけるように、以下の3点を重点的に解説しています。
・データをどのように分析するのか
・なぜそのように分析するのが良いことなのか
・Pythonを使ってどのように分析するのか

【統計学を勉強するためのツールについて】
この書籍では、学習していく際のツールに、プログラミング言語のPythonを使用します。
PythonはExcelやRより自由度が高く、機械学習に多く利用されているので幅広い層から注目集めています。
Pythonに馴染むことにより、機械学習を利用したデータ分析者になるための基礎的な技術も身に付けられます。

【本書の構成】
本書は全7部構成になっています。
それぞれの部で次のようなことを解説しています。
第1部では統計学の基本を解説しています。
第2部でPythonの基本やJupyter Notebookの使い方を説明します。
第3部でPythonを用いた統計分析の方法を学びます。
第4部からは統計モデルについて学んでいきます。
第5部では正規線形モデルを解説します。
第6部それを発展させた一般化線形モデルについて解説します。
第7部は、統計学から機械学習へのつながりを学びます。

統計学やPythonのことを何も知らない方にもオススメの一冊です。

※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。
※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。
※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。
※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。

(翔泳社)

目次の登録はありません。

付属データはこちら

書籍への問い合わせ

正誤表、追加情報をご確認の上、こちらよりお問い合わせください

書影の利用許諾について

本書籍に関する利用許諾申請はこちらになります

追加情報はありません。

ご購入いただいた書籍の種類を選択してください。

書籍の刷数を選択してください。

刷数は奥付(書籍の最終ページ)に記載されています。

現在表示されている正誤表の対象書籍

書籍の種類:

書籍の刷数:

本書に誤りまたは不十分な記述がありました。下記のとおり訂正し、お詫び申し上げます。

対象の書籍は正誤表がありません。

最終更新日:2018年06月18日
発生刷 ページ数 書籍改訂刷 電子書籍訂正 内容 登録日
1刷 v
余白に追加
2刷
本書のサンプルファイルについて   サンプルファイルのダウンロード先  本書で使用するサンプルファイルは、下記のサイトからダウンロードできます。適宜必要なファイルをご使用のパソコンのハードディスクにコピーしてお使いください。   ・サンプルプログラムのダウンロードサイト  URL:https://www.shoeisha.co.jp/book/detail/9784798155067   免責事項について サンプルファイルは、通常の運用において何ら問題ないことを編集部および著者は認識していますが、運用の結果、万一いかなる損害が発生したとしても、著者及び株式会社翔泳社はいかなる責任も負いません。すべて自己責任においてお使いください。

本書のサンプルファイルについての記述を追加。
2018.05.29
1刷 038
上から11行目
2刷
2.2 母集団単純ランダムサンプリングによって
2.2 母集団から単純ランダムサンプリングによって
2018.04.19
1刷 057
下から3行目
2刷
これはP(A|B)=P(B)と同じ意味です。
これはP(A|B)=P(A)と同じ意味です。
2018.05.02
1刷 175
上から12行目
対数の弱法則と対数の強法則
大数の弱法則と大数の強法則
2018.06.18
1刷 186
本文1行目
2刷
シミュレーションの結果はs_mean_arrayという変数に
シミュレーションの結果はt_value_arrayという変数に
2018.04.23
1刷 193
下から2行目
2刷
「(標本平均-母平均)+ 標準誤差」
「(標本平均-母平均)÷ 標準誤差」
2018.04.19
1刷 194
下から7行目コード中
2刷
se = sigma / sp.sqrt(len(fish)) se
sigma = sp.std(fish, ddof = 1) se = sigma / sp.sqrt(len(fish)) se
2018.04.23
1刷 210
下から6行目
2刷
stats.normに指定する平均値を50とすることでシミュレーションをして50000回t値を計算します。
シミュレーションをして50000回t値を計算します。

「stats.normに指定する平均値を50とすることで」という文言を下から2行目へ移動
2018.04.23
1刷 210
本文下から1行目
2刷
帰無仮説が正しいと仮定して、50000回、標本抽出~t値計算を繰り返します。
stats.normに指定する平均値を50とすることで帰無仮説が正しいと仮定して、50000回、標本抽出~t値計算を繰り返します。
2018.04.23
1刷 222
下から3~4行目
赤いボタン250人 青いボタン50人
青いボタン250人 赤いボタン50人
2018.06.18