スケーラブルデータサイエンス データエンジニアのための実践Google Cloud Platform(ValliappaLakshmanan 葛木美紀 中井悦司 長谷部光治)|翔泳社の本
  1. ホーム >
  2. 書籍 >
  3. スケーラブルデータサイエンス データエンジニアのための実践Google Cloud Platform

スケーラブルデータサイエンス データエンジニアのための実践Google Cloud Platform 発売予定



監修
監修

形式:
書籍
発売日:
ISBN:
9784798158839
価格:
本体3,800円+税
仕様:
B5変・400ページ
分類:
データサイエンス
  • このエントリーをはてなブックマークに追加

身近な例からデータサイエンスの深淵を体感し
スケールさせるノウハウを学ぶ

【本書の内容】
「膨大なデータを分析して傾向を探り意思決定に援用する」とはよく耳にするフレーズですが、「膨大なデータ」から「援用する」までの間に、どのようなことがなされているのでしょうか。その各段階における必要な知識や技能やツールやインフラにはなにがあるのでしょうか。
本書はそういった疑問を、身近な例(フライトスケジュールからミーティングの参加・不参加確定)から説き起こします。とはいえ、それは単に米国運輸省のデータをダウンロードし、フライトの傾向を時間軸に合わせて分析し、スケジュールとして提示する、という“シンプル”なストーリーではありません。
「データ分析を実行してビジネスで成果を出す」ことができる人を「データエンジニア」と呼ぶ、Googleならではの文化が色濃く出た1冊です。すなわち、クエリの構築やレポート、グラフ化が最終目標ではなく、それらをひっくるめたスケーラブルで反復可能なシステムを構築できる人材への足がかりとなる1冊であり、肩書としての「データサイエンティスト」から、真に求められているデータサイエンティストへと、自身をスケールしていくための手引書です。

本書は、
Valliappa Lakshmanan,
"Data Science on the Google Cloud Platform: Implementing End-to-End Real-Time Data Pipelines: From Ingest to Machine Learning", O'Reilly Media, January 12, 2018.
の邦訳版です。

【本書のポイント】
・Google Cloud Platformの具体的な活用方法
・データ分析からサービス構築まで、必要な知識
・データサイエンスをスケールするという考え方

【読者が得られること】
・データサイエンスに必要な知識を段階を追って習得できる
・データ収集からサービス構築までの一連の流れを理解できる
・各ステージにおける勘所や肝となる考え方を学べる
・Google Cloud Platformにある一群のツールを使えるようになる
・統計学や機械学習を理解していれば、モデルをコード化できるようになる

【対象読者】
・データエンジニア、データサイエンティスト
・データアナリスト、データベース管理者
・システムプログラマ



第1章 データに基づくより良い意思決定
第2章 クラウドへのデータの取り込み
第3章 魅力的なダッシュボードを作成する
第4章 ストリーミング・データ処理
第5章 インタラクティブなデータ探索
第6章 Cloud Dataprocによるベイズ分類器
第7章 Spark によるロジスティック回帰分析
第8章 スライディングウインドウによる集計処
第9章 TensorFlowを用いた分類モデル
第10章 リアルタイム機械学習

本書は付属データの提供はございません。

書籍への問い合わせ

正誤表、追加情報をご確認の上、こちらよりお問い合わせください

書影の利用許諾について

本書籍に関する利用許諾申請はこちらになります

追加情報はありません。
正誤表の登録はありません。